Global Wind Hazard Preview

TAOStm Real Time Operations System Kinetic Analysis Corporation Enki Research Computing Facility, Savannah, Georgia, USA

May 5, 2024

Abstract

TAOStm WX Global Analysis of wind hazards and economic impact estimates based the 20240505000000 00z forecast. This analysis was run using proc:gfs TAOS Version 25.01:ROCKY9:GCC11:2024:106:1435, and includes wind hazards from tropical cyclones, winter storms, mid latitude cyclones, and other synoptic scale weather systems.

Report generated Sun May 5 07:44:08 AM UTC 2024 on cortex2 using GFS data downloaded on Sun May 5 03:31:36 AM UTC 2024.

List of Tables

	Global Economic Impacts for day 1	
1.2	Countries with over 100 thousand USD in impacts	3
	Global Economic Impacts for day 2	5
2.2	Countries with over 100 thousand USD in impacts	5
	Global Economic Impacts for day 3	
	Countries with over 100 thousand USD in impacts	
	Global Economic Impacts for day 4	
4.2	Countries with over 100 thousand USD in impacts	9
	Global Economic Impacts for day 5	
5.2	Countries with over 100 thousand USD in impacts 1	1

List of Figures

1.1	GFS Wind Forecast for day 1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
2.1	GFS Wind Forecast for day 2						•		•	•	•				•				6
3.1	GFS Wind Forecast for day 3						•		•	•	•				•				8
4.1	GFS Wind Forecast for day 4						•			•									10
5.1	GFS Wind Forecast for day 5																		12

Forecast Day 1: 2024-05-05

Table 1.1: Glob	al Economic	e Impacts for day 1
scenario	exposures	$economic_impact$
f001_20240505	163980	2.77 Million USD

Table 1.2: Countries with over 100 thousand USI) m	impacts
---	-----	---------

ble 1.2: Countries with over 100 thousand USD in impact							
name	$num_exposures$	$economic_impact$					
Kazakhstan	5617	.12 Million USD					
South Korea	2723	.30 Million USD					
United States	118578	2.11 Million USD					
(3 rows)							

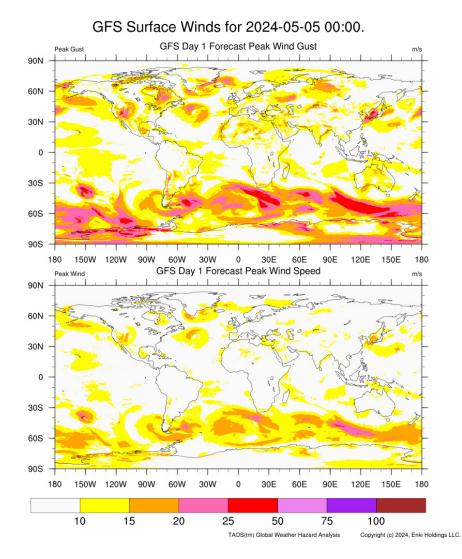


Figure 1.1: GFS Wind Forecast for day 1

Forecast Day 2: 2024-05-06

Table 2.1: Global Economic Impacts for day 2					
scenario	exposures	$economic_impact$			
f002_20240505	387593	60.79 Million USD			

Table 2.2: Countries with over 100 thousand USD in impacts

name	num_exposures	$economic_impact$					
Argentina	29167	.14 Million USD					
Bangladesh	7951	2.65 Million USD					
India	21735	47.70 Million USD					
Libya	15407	.28 Million USD					
Russia	42102	.15 Million USD					
United States	249508	9.68 Million USD					
(6 rows)							

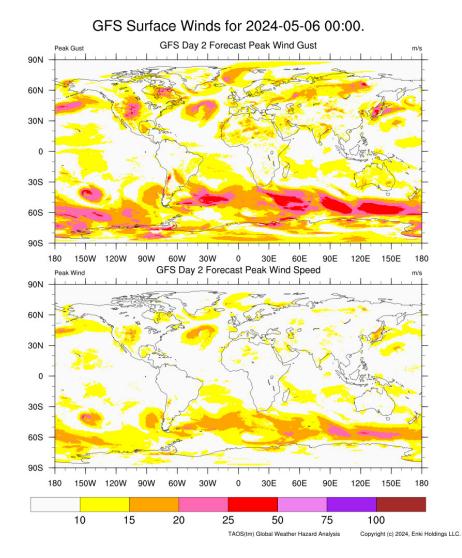


Figure 2.1: GFS Wind Forecast for day 2

Forecast Day 3: 2024-05-07

Table 3.1: Global Economic Impacts for day 3					
scenario	exposures	$economic_impact$			
f003_20240505	344119	16.48 Million USD			
		I			

Table 3.2: Countries with over 100 thousand USD in impacts

name	num_exposures	$economic_impact$
Argentina	85397	1.09 Million USD
Chile	23147	.42 Million USD
India	49532	11.25 Million USD
Iran	11024	.26 Million USD
Libya	34191	.97 Million USD
United States	103120	2.25 Million USD
	(6 rows)	

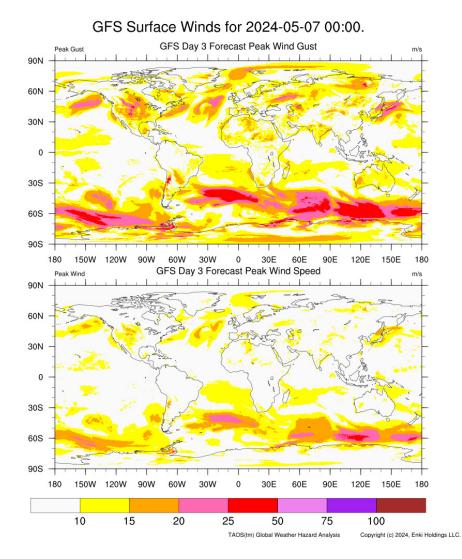


Figure 3.1: GFS Wind Forecast for day 3

Forecast Day 4: 2024-05-08

	Table 4.1: Global Economic Impacts for day 4					
scenario	exposures	$economic_impact$				
f004_20240505	443201	3.85 Million USD				

Table 4.2 :	Countries	with over	100 thousand	USD in	impacts

le 4.2: Countries with over 100 thousand USD in impacts							
name	$num_exposures$	$economic_impact$					
Argentina	342829	2.16 Million USD					
India	13015	.81 Million USD					
Libya	63600	.24 Million USD					
New Zealand	2955	.48 Million USD					
(4 rows)							

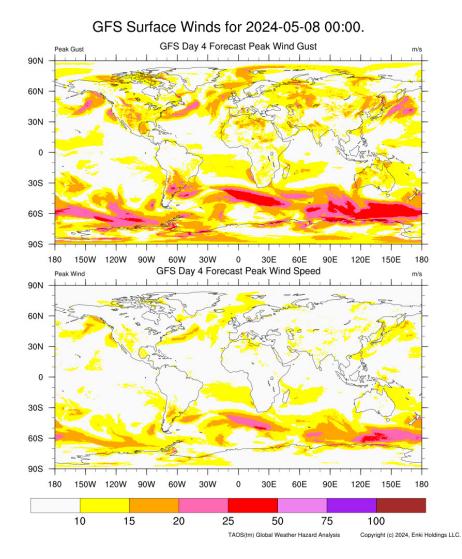


Figure 4.1: GFS Wind Forecast for day 4

Forecast Day 5: 2024-05-09

Table 5.1: Glob		e Impacts for day 5
scenario	exposures	$economic_impact$
f005_20240505	160125	3.94 Million USD

Table 5.2: Countries with over 100 thousand USD in impacts	Table 5.2 :	Countries	with over	100	thousand	USD	in impacts
--	---------------	-----------	-----------	-----	----------	-----	------------

e 5.2: Countries with over 100 thousand USD in impa								
	name	num_exposures	$economic_impact$					
	Argentina	21978	1.27 Million USD					
	India	18495	1.65 Million USD					
	Iran	17476	.13 Million USD					
	Libya	56286	.66 Million USD					
		(4 rows)						

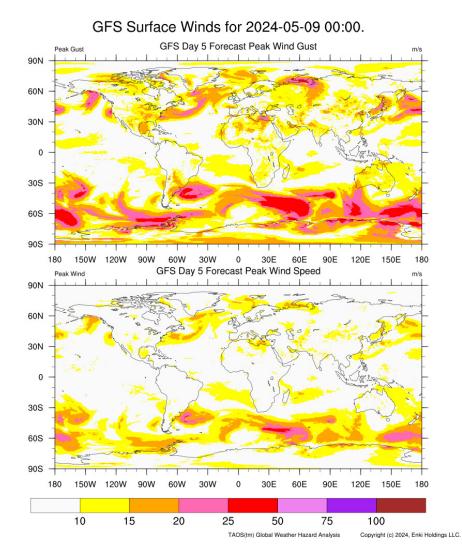


Figure 5.1: GFS Wind Forecast for day 5

Technical Notes

The TAOStm WX Global Analysis (TAOS/WX) is part of the TAOStm storm hazard modeling system. TAOS/WX ingests global or regional weather models and, using the same graphical processing systems, statistical methodologies, exposure, and damage models as the tropical cyclone (TAOS/TC) and earthquake (TAOS/EQ) packages, generates estimates of weather hazards and the economic impact of weather hazards on those exposures.

6.1 Input Meteorological Data Processing

This chapter describes the Beta version 1.0 of TAOS/WX, which is a hindcast and five day forecast using the US National Center for Environmental Prediction Global Forecast System (GFS) as the source of raw meteorological data. This data is processed in to standard TAOStm format NetCDF files for further processing by the TAOStm graphical and analytical tools.

6.1.1 Forecasts

Each day at 08z (5am EDT) the outputs of the primary 00Z GFS run are downloaded from NCEP using either the NOMADS or NOAA telecomunications gateway servers. The raw data sets in GRIB2 format are processed and converted in to NetCDF format for compatibility with TAOStm standard tools as well as for more efficient downstream processing and storage. The GFS data are processed by a streamlined version of the TAOS/TC model to generate exposure grid level wind, wave, storm surge, rain, and inland flood products. These are then available for graphics generation or analysis by the exposure and damange processing system.

6.1.2 Hindcast

Along with the 00z forecast run, the data acquisition system fetches the simulations used by NCEP to "bootstrap" each GFS run and prepare for the next simulation. These are effectively 6 hour hindcasts, which are integrated to form hourly snapshots and maxima of the previous day. As with the forecast outputs, the GFS data are processed by a streamlined version of the TAOS/TC model to generate exposure grid level wind, wave, storm surge, rain, and inland flood products. These are then available for statistical analysis, graphics generation, or analysis by the exposure and damage processing system.

6.2 Exposure and Damage Processing

This is a brief overview of the exposure system and damage calculations with an emphasis on differences between TAOS/WX and other TAOStm family processing. The processed GFS meteorological forecast is run against the TAOStm basic exposure system at a resolution of 30 arc seconds (std30). The results are in 2021 US Dollars based on Purchasing Power Parity (PPP), with economic impact results generated for 3,614 level one administrative areas in 248 countries. For more complete information on the exposure data base see the latest version of the **TAOStm Basic Exposure Data and Hazard Impact Estimation System Technical Overview**.

The Standard PPP based Exposure Data set is used for this analysis. NASA Global Population data and NOAA satellite derived land cover data are used in the exposure generation process to identify urban areas, agricultural areas, and other characteristics for creating an exposure classification for each inhabited 1km (30 arc second) land grid cell. The exposure system classifies each grid cell in to one of up to eight possible exposure categories and allocates an economic value to that cell. The Global Administrative Areas project (GADM) is the primary reference for National, Level 1 (State Equiv), and Level 2 (County Equiv) boundaries.

Damage fractions are computed using the same Fortran 90 program used in the TC and EQ systems (dmgmod). Wind damage curves are derived from a third power function based on wind speed and the type of exposure. Further information (including damage curve plots) may be found in the Technical Overview.